
1

Atomchain Storage: A distributed-decentralized storage (ddStorage)

Author: Okpara Okechukwu D. Email: okpara.net@gmail.com

Website: www.okpara.net Date: 01-05-2022

Abstract:

We propose a method of distributed decentralization of files, data structures, and persistent

algorithms for atomchain technology, which aims to eliminate the inefficiencies of a traditional

decentralized storage (dStorage).

Keywords: atom network, atomchain, dStorage, ddStorage

1. Introduction

Decentralized storage systems consist of a peer-to-peer network of user-operators (or nodes) that

hold a portion of the overall data, creating a resilient file storage sharing system. All data of

atomchain is stored mainly in active nodes. These nodes are connected through the P2P protocol.

When a user initiates a transaction, the transaction is broadcasted through the P2P protocol, and the

atom creator (or miner) node will verify it, package it, and then broadcast it to the atom network.

If atomchain were to grow steadily, expanding to large amounts of data it will not be feasible for all

atomic (reactor) nodes to continue to run. And the cost of deploying such huge data in the future to

Atomchain's Atom Network would be prohibitively expensive due to computation energy fees.

2. Distributed-Decentralized Storage (or ddStorage)

This involves the combined effort of applications on atom networks running atomchain protocols.

Atom network is both decentralized (there is no central node or server that controls the operations

of the network) and distributed (multiple nodes work together, for instance by sending messages).

Atomchain’s ddStorage service is like a decentralized program running on a distributed platform

using trie data structures to manage data [1]. We shall delve into ddStorage mechanisms by

considering four aspects of a decentralized storage (dStorage):

• Persistence mechanism / incentive structure

• Data retention enforcement

• Decentrality

• Consensus

3. Persistence Mechanism / Incentive Structure

Persistence mechanism is needed for a piece of data to persist permanently. Here, the whole chain

needs to be accounted for when running an atomic (reactor) node. A new piece of data is bonded

into the last atom (atomsphere), and it continues to grow – requiring every node to replicate all the

encapsulated or embedded data. This persistence Mechanism has an incentive structure, in which a

2

cryptocurrency payment is made to the atomsphere creator. The atom creator (or miner) node is

paid to add the data on the atomchain. Moreover, quark objects (using omega atom wallet

addresses) can be used to store the hash of the location of a piece of data. To keep the data

persisted, these quark objects or codes must be continually funded.

4. Data Retention Enforcement

To ensure data retention, Atomchain is expected to use some type of cryptographic challenge that is

issued to the nodes to make sure they still have the data. Here Atomchain issues a challenge to the

active nodes to see if they have the data at both the most recent atom and a random atom in the

past. If a node is found wanting or deficient, it is penalized.

5. Decentrality

Atomchain decentralization may be measured by an application that can account for the entire atom

network. In particular, a decentralized application that can check a given cluster of atom fields'

analytics and metrics.

6. Consensus

Atomchain main consensus mechanism is based on atomic bonding.

7. Transaction Storage

According to Wikipedia [2], a Merkle tree is typically a binary tree typical binary tree.

3

Hash trees allow efficient and secure verification of the contents of large data structures. Hash trees

are a generalization of hash lists and hash chains. Therefore, using a Merkle tree for our

transactions will allow atomchain to be as compact as possible in terms of disk

space, as well as allowing for secure verification of transactions.

From the Atomchain Network Whitepaper [3], atomic nodes will contain the whole transaction

history while orphaned atomic nodes will contain the Merkle root hash.

8. Ω Address Transaction Events

In atomchain, there two types of transactions:

1. Normal α transactions, and

2. Ω transaction events

A transaction event is a cryptographically signed instruction from an Ω address, which

changes the state of the atomchain.

These transactions are “events” that can trigger a change of state or cause the Atomchain

Virtual Machine to modify the state of the atomchain, for instance, by evaluating orbit

codes or updating balances of the Ω addresses.

A transaction event is usually a byte-array signed message originated by a Ω address at rest,

transmitted by the atom network, and recorded on the atomchain.

α-based Ω-based FIELD BYTES DESCRIPTION
 ver 4 Version

as TXID Transaction index
(TXid)

4

as TXcount as ΩEVTcnt Event count (TXcnt) 16 Number of
transaction events
from the sender. It
starts from 0 and
increments each

time a transaction
is sent or each time
a transaction event

occurs
 energyPrice (Eprice) 16

 energyMax (Emax) 16 The maximum

number of energy

units that the

transaction event

will be allowed to

consume

4

as (TXout) as 20-byte Ω

address
Recipient address

(TXout)
 This is the address

to which the
transaction is being

sent. For Ω

addresses at rest,
the transaction will
involve a transfer

of value. For Ω

addresses in orbit,
the transaction will
result in the orbit’s

code being
executed

 Oc or Od varies Message call data
or orbit code
creation data

 Tv (uint8) 1 v of ECDSA
signature output

(x-coordinate)
Note: signature is

data that identifies
and authenticates
the transaction’s

sender

 Tr char[32] 32 r of ECDSA
signature output

(recovery)

 Ts char[32] 32 s of ECDSA
signature output
Note: that ECDSA

elliptic curve is
secpk256k1

 data For orbit code
related activities

such as
deployment or
execution of a

code. During code
deployment, this
optional arbitrary

binary data is
where the orbit

byte code is sent.
When calling an
orbit code, this
specifies which

functions should be

5

called and with
what arguments

as little-
endian integer

 Amount/Value
(TXvalue)

32 The amount of oke
to transfer from

the sender to the
recipient address.
This amount may

be zero.
 maxFeePerEnergy The max energy fee

a user is willing to

pay for the

transaction to be

processed

 maxCreatorEnergyFee The amount of

energy intended to

serve as a tip to the

miner who

processes the

transaction
TXin TXin varies
TXout TXout varies

inCount inCount varies
outCount outCount varies

 timeLock 2 a reference to
timestamp in unix

epoch or atom index
as Shell coinbaseShell 50 Arbitrary data.

Miners commonly

place TXcount
in this field to

update the

nucleus merkle

root during

hashing

Table 1. Data Structure of atomchain transactions (and events)

The atom network serialization format is the only standard form of a transaction event,

hence, a transaction event can be seen as a serialized binary message or byte array that

contains the following data: event count, energyPrice, energyMax, recipient address, value,

data field and (v,r,s).

event count is a sequence number of transaction sent from the address. Each time a

transaction event is sent from the address, the event count value is incremented by one. Event

count helps in preventing message replay attacks.

6

energyPrice represents the price of energy in atomcoin the originator is willing to pay, for

instance, 1 energy = 10 atomcoins. It is determined by market supply and demand.

The price of energy = energyPrice * energyMax

energyMax is the limit of the amount of OKE the sender is willing to buy for this transaction

event. If energyMax is not enough to transfer OKE, the transfer will be cancelled and energy

will be refunded to the sender. If the energyMax is set in excess, the leftover energy will be

refunded to the sender.

Recipient address is the destination Ω address either at rest or in orbit.

Value represents the amount of OKE/atomcoin from the originator to the recipient. Value is

used for both transfer of money and orbit code execution.

Data field is used for deployment or execution of orbit codes. It is a variable-length data

payload. Messages in data field can be seen as function calls. If this field is empty, it means a

transaction event is for a payment not an execution of orbit code.

A transaction event needs to contain messages in order to call/execute functions. A message

can contain specific details about the action being authorized and any parameters required to

execute the action.

A message contains: the sender of the message, the recipient of the message, the value field

which contains the amount of atomcoin to transfer alongside the message to the orbit code

address, optional data field that is the actual input data to the orbit code, initEnergy value

that limits the maximum amount of energy the code execution triggered by the message can

incur.

v, r, s are the components of an ECDSA digital signature of the originating Ω address at rest.

ECDSA is used as a digital signature for verification. v indicates both the atomID and the

recovery ID to help the ECDSArecover function check the signature. r and s are inputs of

ECDSA and sec256k1 constants to define the elliptic curve. The signature identifies the

sender. The signature is generated when the transaction is signed by the sender’s home.

The state of the atomchain can be changed when a Ω address transaction event is executed

on it. This event is like what happens between the states in atomchain, such as keeping

track of the address balances and details of different addresses at any point in future time.

Ω address transaction events (or Ω transactions, in short) are stored in form of events root,

evanescent root and things root. The trie’s root node (events trie, evanescent trie or things

trie) is a unique, deterministic cryptographic hash that can be used as evidence that the trie

has not been tampered with.

Events trie is a permanent data type; example is an event that has been fully confirmed. The

keccak-256-bit of the events trie’s root node is referred to as the events root.

7

Evanescent trie is a global transitory data type that is constantly updated; example is the

balance of an Ω address. Evanescent trie contains all Ω addresses and samples pairs that

exist on the atom network. Ω addresses are 160-bit identifiers. Samples are created by

encoding the event count, address balance, virtual root, and codeHash.

Evanescent trie’s root node (referred to as the evanescent root) is a hash of the entire

evanescent trie at any given point in time and it used as a secure and unique identifier for

the trie. An evanescent root node is cryptographically dependent on all internal evanescent

trie data.

In a given atom, the keccak-256-bit hash of the evanescent trie’s root nodes is stored as the

evanescent root value.

Each Ω address has its own samples trie. A 256-bit hash of the samples trie’s root node

(referred to as the samples root) is stored as the virtual root value in the global evanescent

trie.

8

Ω address are only added to the events trie only when a successful transaction event has

taken place with respect to the Ω address in such that energy was consumed when the

event was included in the atom; this guard against malicious attackers trying to continuously

bloat the events trie.

An events trie of an atom in an atomchain contains many transaction events. The order of

these events is decided by the atom creator that assembled or mined the atom. mined

atoms are never updated, and the position of the transaction events within the atom is

permanent.

Finally, in order to reference a particular trie in an atom, one needs to obtain the trie’s root

hash as a reference.

9. α Address Transactions

If you want to verify α transaction ID (TXID) or the raw transaction data of a given
transaction, you calculate the double-SHA256 hash of the raw transaction data which
should match the transaction ID:

TXID == SHA256(SHA256(raw_transaction))

A coinbase α transaction is a special transaction created by the creator of the atom. It is
used for the atom creator to collect the mining reward and transaction fees from other
transactions in the same atom. Each atom should have only one coinbase α transaction. And
it is placed as the first transaction in the transaction list.

10. Transaction (Event) Signing

1. Calculation of the unsigned transaction’s hash (uTXhash): this calculates the Keccak-

256 hash of the byte array from ver to TXvalue (inclusive) from Table 1.

uTXhash = KEC256(ver, … , TXvalue)

2. Signing of the calculated hash: this is the deterministic signing of the using a home to

output the values of v, r, s.

ECDSA(uTXhash,home) = (v, r, s)

After a transaction is signed and submitted, a series of events takes place:

1. A transaction hash gets cryptographically generated.

2. The transaction is broadcasted out to the atom network in a pool of numerous other
transactions.

9

3. A miner selects the transaction and includes it in the next atom to verify the transaction.

4. The transaction receives “confirmations.” Each confirmation equals one new atom of
the particular (α- or Ω-) operator created since the atom that the transaction was a part of.
The more confirmations, the more certain it is that the transaction will be “successfully”
processed by the network.

Generally, a transaction (event) can be considered final after 4 atoms.

11. Conclusion

In the future, atomchain ddStorage may also support compatible content distribution and file

referencing dStorage platforms for storing data; as well as multi-chain ddStorage compatibility.

12. Definitions

• A binary tree is a tree whose elements have at most 2 children. Since each element in a

binary tree can have only 2 children, we typically name them the left and right child.

• A Merkle Tree is a tree in which every leaf node is labelled with the cryptographic hash of a

data block, and every non-leaf node is labelled with the cryptographic hash of the labels of its

child nodes. For example, in the picture hash 0 is the result of hashing the concatenation of hash

0–0 and hash 0–1. That is, hash 0 = hash(hash(0–0) + hash(0–1)) where + denotes

concatenation.

• A tree is a collection of nodes, where each node is a data structure consisting of a value,

together with a list of references to nodes.

13. References

[1] Okpara O. D. 2022. The Atomchain Wallet Whitepaper, https://okpara.net/AtomWallet.pdf

[2] Retrieved on 01-05-2022 from https://en.wikipedia.org/wiki/Merkle_tree

[3] Okpara O. D. 2022. The Atomchain Network Whitepaper, https://okpara.net/AtomNetwork.pdf

